Direct detection of OH yields from a temperature dependent study of HOCH, O, + HO, in HIRAC

<u>Stephanie Orr,¹ Fred Winiberg,¹ Charlotte Brumby,¹ Iustinian Bejan,¹ Terry Dillon² and Paul Seakins¹</u> **UNIVERSITY OF LEEDS**

> ¹University of Leeds, UK; ²University of York, UK Corresponding author: cm07so@leeds.ac.uk

Introduction

- Recent studies have shown the reactions • between organic peroxy radicals (RO₂) and the hydroperoxyl radical (HO₂) to be radical propagating [1].
- RO₂ + HO₂ reactions in pristine (low NOx) environments are the major tropospheric sink of RO₂ and key components of the OH-initiated oxidation of isoprene.
- It is thought that they may proceed *via*

Experimental

- Experiments performed in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) (Figure 2).
- Chamber has 8 rows of internal photolysis lamps ($\lambda \sim 360$ nm) and 4 mixing fans (total mixing time \sim 70 s).
- Experiments conducted at T = 263, 273, 283 and 293 K and p = 1000 mbar and additional experiments to quantify wall loss rates.
- HO₂ and HCHO generated by reacting methanol with chlorine atoms: $Cl_2 + hv \rightarrow 2Cl$ $CI + CH_3OH \rightarrow CH_2OH + HCI$

OH-recycling mechanisms and hence account for model/measurement discrepancies of HO_x (OH + HO₂) [2].

Figure 1: The different product channels of the hydroxymethyl peroxy + HO_2 reaction.

- Reaction with formaldehyde (HCHO) is an important influence on HO_2 in the troposphere, especially at low • temperatures, and is of importance to laboratory experiments where [HCHO] is high. The reaction is a key area of uncertainty in the $CH_3C(O)O_2 + HO_2$ reaction, which has recently been studied in this laboratory [3].
- The HO₂ + HCHO equilibrium constant (R1) is well established in the literature and the rate constants, k_1 and k_{-1} have recently been measured directly [4]. However, the fate of HOCH₂O₂, which predominantly reacts with HO₂ (R2, Figure 1) is less well characterised.
- OH has been measured indirectly in a chamber study [5], which proposed that the reaction proceeds via • three channels (R2a-c, Figure 1) - the only determination to date of these branching ratios.
- Theoretical calculations have provided further evidence of an OH channel [6]. •
- This work aims to measure the branching ratio of the OH-producing channel of the hydroxymethyl peroxy + HO₂ reaction (channel (2c), Figure 1) and its variation with temperature.

$CH_2OH + O_2 \rightarrow HO_2 + HCHO$

 Reactants and products were monitored with a time resolution of ~60 s (Table 1). 	
Instrument	Species measured
FTIR	Methanol, formic acid, formaldehyde
GC-FID	Methanol
Fluorescence Assay by Gas Expansion (FAGE)	OH, HO ₂
Commercial analysers	NO, NO ₂ , O ₃ (all were below LODs throughout experiments)

Table 1: Instruments used and species measured throughout experiments.

Figure 2: (a) The HIRAC chamber. (b) 8 rows of photolysis lamps inside the chamber.

Results

• Direct measurements of OH using FAGE, confirming

Conclusions and Future Work

channel (2c).

- Modelling performed in Kintecus using a chemical mechanism based on that described in Jenkin et al. (2007) [5] shows good agreement with measurements at all temperatures (example dataset at T = 273 K shown in Figure 3).
- Branching ratios for R2 included in the model are: Y_{2a} = 0.5; Y_{2b} = 0.3; Y_{2c} = 0.2, as reported by Jenkin *et al.* (2007) [5].
- No temperature dependence of the OH channel observed, $Y_{2c} = 0.2$ gave a good model fits to the data at all measured temperatures (Figure 7).
 - Discrepancy between model/measurement of HO₂ at all temperatures (30-50%) over-prediction).
- Measured OH yields at T = 293 K, where [OH] is approaching the limit of detection (LOD) of the FAGE

Understanding the mechanism

- It is important to look at the contribution of individual
 - reactions to overall product formation, to ensure that the
 - overall process is well understood.
- For our system, rate of production (ROP) and rate of

- Successful experiments of the reaction of $HO_2 + HOCH_2O_2$ at *T* = 263 - 293 K and *p* = 1000 mbar.
- Reactant HO₂ and products OH, HCHO and HCOOH were observed directly.
- Only study to measure both radicals and stable products directly.
- ROP and ROD analyses validate measurements of species; the target reaction is well understood.
- Good agreement between measurements and literature $(Y_{2a} = 0.5; Y_{2b} = 0.3; Y_{2c} = 0.2 \text{ gave good model fits})$ [5].
- No temperature dependence has been observed between T = 263 - 293 K, good model fits to data where $Y_{2C} = 0.2$ at all studied temperatures (Figure 7).
- HO₂ measurements need to be scrutinised in more detail.
- Constrain the system to measurements, including OH, and use the model to calculate Y_{2C} at all temperatures. Future plans to look at HO₂ + CH₃CHO equilibrium which is also of importance to the $CH_3C(O)O_2 + HO_2$ reaction.

instrument (~ 1.5×10^6), are in good

agreement with the model (Figure 4).

Figure 4: Measured and modelled OH for

experiment at T = 293 K.

destruction (ROD) analyses were carried out for the experimental data for all measurable species.

- Figure 5 shows that the target reaction $(HO_2 + HOCH_2O_2)$ reaction times.
- dominates OH formation chemistry through to t = 600 s. • Up to t = 600 s, OH loss reactions are well characterised
 - (Figure 6).
 - Because ROP = ROD, which is well characterised, and the
 - target reaction dominates OH production, we understand our target reaction well.
- This is also the case for HO₂, HCHO and for HCOOH (>99% destruction reactions at different produced from R2b&c, >97% removed by reactor walls). reaction times.

Therefore, experiments are sensitive to Y_{2b} and Y_{2c} .

References

1] J. Orlando and G. Tyndall, Chem. Soc. Rev. **41**, 6294-6317 (2012); [2] J. Lelieveld *et al.*, Nature, **452**, 737-740 (2008); 3] F. A. F. Winiberg, Ph.D Thesis, University of Leeds (2014); [4] P. Morajkar, C. Schoemaecker, M. Okumura and C. Fittschen, Int. J. Chem. Kinet. 46, 245-259 (2014); [5] M. E. Jenkin, M. D. Hurley and T. J. Wallington, PCCP 9, 3149-3162 (2007); [6] T. L. Nguyen, L. Vereecken and J. Peeters, Z. Phys. Chem. 224, 1081-1093 (2010).