HIRAC - the Highly Instrumented Reactor for Atmospheric Chemistry RESEARCH COUNCIL

Shona C. Smith, Tamsin L. Malkin, Khaunjit Hemavibool, David R. Glowacki, Andrew Goddard, Ryuichi Wada, Michael J. Pilling, Dwayne E. Heard and Paul W. Seakins School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK A21-0206

1. HIRAC

NATURAL

ENVIRONMENT

The Highly Instrumented Reactor for Atmospheric Chemistry, HIRAC,¹ is a new NERC funded atmospheric simulation chamber developed to bridge the divide between the study of elementary reactions in the lab, and large scale field work. HIRAC has been used to study an number of atmospherically relevant reactions. In this poster we present examples of studies relating to the 3 major HIRAC objectives.

Design

- 2.25 m³ stainless steel drum (Fig. 1).
- 4 mixing fans give mixing times of ≤70 s.
- 8 rows of photolysis lamps (Fig. 2).
- Uniquely pressure and (soon) temperature variable (~200 350 K).

Instrumentation

Instrument	Species Detected	Detection limit	Time resolution
FAGE	OH and HO ₂	0.1 - 0.02 ppty	1 - 30 s
(Fluorescence Assay by Gas Expansion)			1 - 30 s
CRDS	NO ₃	6 ppty	4.5
(Cavity Ring Down Spectroscopy)			
FTIR 2 (Fig. 3)		50 - 80 ppby	60 s
(Fourier Transform Infra-Red)	03, 01130110, 0114, 110110	30 - 00 ppbv	00 3
GC-FID	Organic species e.g.:	0.01 0.05 pppy	20 s averages
(Gas Chromatography / Flame Ionisation Detection)	CH4, C6H12, C5H8, C3H6O2	0.01 = 0.05 ppmv	at 2 min resolution
	NO _x (=NO+NO ₂)	50 pptv	120 s
Commercial Analysers	O ₃	1ppbv	20 s
	H ₂ O	2.5% RH	10 s

Table 1: Summary of HIRAC instrumentation with typical detection limits and time resolutions

3. Kinetics and SAR development - Cl+acetates by relative rate

 Accurate kinetic data for CI+ester reactions are required to analyse data from chamber experiments in which CI atoms are used to initiate the oxidation of organic compounds.

· Relative rate studies of the reaction of CI atoms with a series of acetates have been carried out inside of HIRAC using GC-FID and FTIR spectroscopy.

 Table 3 shows a comparison between values determined in this study and those calculated using the Structural Activity Relationship (SAR) method. In the SAR method the calculation of the overall rate coefficient is based on the estimation of CH₃, CH₂ and CH group rate coefficients which depend only on the identity of the substituents bonded to the group.

Compound	kexpt/10-11	kcalc a/ 10-11	kcalc ^b / 10-11
compound	cm ³ molecule ⁻¹ s ⁻¹	cm ³ molecule ⁻¹ s ⁻¹	cm ³ molecule ⁻¹ s ⁻¹
Methyl Acetate	0.206 ± 0.043	0.199	0.199
Ethyl Acetate	1.68 ± 0.29	2.922	1.69
n-Propyl Acetate	6.02 ± 0.41	9.48	6.39
n-Butyl Acetate	15.8 ± 1.31	14.7	12.2
t-butyl Acetate	1.69 ± 0.15	4.44	1.65
Ethyl Formate	0.95 ± 0.05	2.79	1.56

Table 3: Summary of measured rate coefficients for CI+acetate reactions along with values calculated using the SAR method. Calculated using factors ^aF(-CO) and ^bF(-C(O)O-).

References

1) D. R. Glowacki et al., Design and initial results from a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC), Atmos. Chem. Phys., 7, pp.5371-5390, 2007.

2) D. R. Glowacki et al., Design and performance of a throughput-matched, zero-geometric-loss, modified three objective multipass matrix system for FTIR spectrometry, Applied Optics , 46(32), pp. 7872-7883, 2007. 3) T. L. Malkin et al., Measurements of OH and HO $_2$ yields from the gas phase ozonolysis of isoprene, Atmos. Chem Phys. Discuss., 9, pp.17579-17631, 2009

Fig 1. The HIRAC laboratory

2. Mechanism development - OH and HO2 yields from O3+isoprene

OH radicals are the major oxidant of volatile organic compounds (VOCs) in the atmosphere. Ozone alkene reactions are a non-photolytic source of HO, radicals (especially forested) air. Pressure dependent (100 - 1000 mbar) OH vields from O_2 +isoprene have been measured both directly and indirectly in HIRAC (Fig. 4).³

Indirect measurements

Scavenger technique: Using cyclohexane as an OH scavenger, the yield of cyclohexanone was measured using GC-FID along with the concurrent loss rate of isoprene.

Kinetic technique: Kinetics studies using cyclohexane. A 10 fold excess O₃ over isoprene was used to ensure that the decay of isoprene was pseudo-first order. The consumption of isoprene was monitored using both FTIR and GC-FID.

Direct measurements

setup.

OH and HO₂ yields were measured using FAGE for chamber pressures between 300 and 1000 mbar (Fig. 5 and Table 2)

4. Instrument development - NO3 Cavity Ring-Down Spectroscopy

HIRAC has been used to carry out the first calibration of a FAGE HO, instrument over a range of external pressures. Find out more at poster A21-0197.

Cavity Ring Down Spectroscopy, CRDS, is a sensitive and absolute technique used to measure a variety of atmospheric species. In HIRAC, a CRDS instrument has been set up across the chamber diameter to measure NO₂ radicals using laser light at λ = 623 nm (250 Hz Nd:YAG pumped dye laser) (Fig. 6). NO₃ radicals were produced in HIRAC by $NO_2+O_3 \rightarrow NO_4+O_2$. The NO₃ detection limit was 6 pptv (time resolution = 4 s (average of 1000 shots) and p = 1000 mbar).

Aldehyde	Average <i>k_{exp} /</i> molecule ⁻¹ cm ³ s ⁻¹	k _{iit} / molecule ⁻¹ cm ³ s ⁻¹ (Atkinson et al., 2005)
Methanal	(6.25 ± 0.38) x10 ⁻¹⁶	$5.5^{+3.2}_{-2.0}\times 10^{-16}$
Ethanal	(2.83 ± 0.59) x10 ⁻¹⁵	$2.7^{+0.1}_{-0.8}\times 10^{-15}$
Propanal	(7.17 ± 0.69) x10 ⁻¹⁵	$6.3^{+2.6}_{-1.8}\times 10^{-15}$
Butanal	(1.02 ± 0.10) x10 ⁻¹⁴	$1.1^{+0.5}_{-0.3} \times 10^{-14}$

Table 4: Comparison between NO₂+aldehyde rate constants measured by CRDS and those from literature

A study of the rate of NO₃ with a series of aldehydes was used to test the system (Fig. 7). All of the experimentally determined NO₂+aldehyde rate constants were found to be within error of literature values (Table 4). The CRDS system will now be used to study NO₂+alkene rate constants and SARs. We also plan to measure glyoxal by CRDS in HIRAC.

1500

See poster A21-0197 and www.chem.leeds.ac.uk/HIRAC for more information about HIRAC